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The two-phase fibre composite model proposed by us elsewhere [Barham and Arridge (1977)] is used 
to explain the behaviour of polyethylene and polypropylene on drawing to very high draw ratios. The 
basis of the theory is that, after necking, there exists a uniform distribution of aligned needle-like ele- 
ments of near perfect crystallinity in a less-perfect matrix. On further drawing these reinforcing ele- 
ments are supposed to elongate in a homogeneous deformation while contracting laterally. The resul- 
tant change in their aspect ratio is sufficient, using short fibre reinforcement theory, to account for the 
increase in the modulus on drawing. The Young's modulus of the drawn fibre is given by the 
expression: 

( ,aTx) 
Ef =cE c 1 + (1 - c ) E  m 

where c is the concentration of elements, E c the modulus of the crystalline elements and E m that of 
the matrix while x, derived from shear-lag theory, depends upon the aspect ratio of the elements and 
the moduli of the two phases. For both polyethylene and polypropylene it is found that x = t 3/2, 
where t is the post-neck draw ratio. The model is applied (1) to the explanation of the observed rela- 
tion between Young's modulus and draw ratio, (2) to explain the temperature dependence of drawing 
behaviour, (3) to postulate a mechanism for non-linear viscoelasticity and creep behaviour and (4) to 
explain the self-stiffening after annealing under constraint [Arridge, Barham and Keller (1977)]. 

INTRODUC~ON 

Crystalline polymers such as polyethylene, polypropylene 
and nylon consist, it is thought, of regions of ordered 
material connected by less well ordered ones. In polymers 
prepared from the melt the predominant crystal form is the 
spherulite, which has been shown to consist of thin twisted 
lamellae, comprised of folded polymer chains, radiating in 
all directions. The spherulites grow from nuclei present in 
the melt and it is the number of the nuclei present in the 
melt at any temperature which, together with the degree of 
supercooling determines the number and size of the spheru- 
lites in the solid. If the solid polymer is deformed by small 
amounts (<0.1%) the spherulites deform viscoelastically and 
the overall dimensions of the sample are not permanently 
changed. If large deformations are applied, however, the 
spherulitic structure is eventually destroyed and a new fibril. 
lar structure is found. According to the model of Peterlin 1 
the fibrillar structure is virtually complete after a deforma- 
tion of ~800% and the original spherulites are no longer 
detectable. 

Many studies have been made of the structural changes 
occurring during large scale deformations, whether these 
are caused by tension alone (drawing), by extrusion, by 
rolling or by other means. 

Drawing causes a pronounced anisotropy in elastic pro- 
perties (as observed e.g. by Raumann and Saunders 2 and 
Ward and coworkersa). It is therefore of interest to know 
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what the maximum elastic modulus could be or, rather, 
what the ultimate values of all the elastic constants (of the 
anisotropic fibre) could be. Theoretical predictions based 
on intermolecular forces have been made for the unit cell of 
polyethylene by Odajima and Maeda 4 and by Wobser and 
Blasenbrey s. Predictions for polypropylene have been made 
by Asahina and Enomoto 6. X-ray measurements of the 
moduli of unit crystals by Sakurada and Kaji 7 give the 
values 252 GN/m 2 for polyethylene and 35 GN/m 2 for 
polypropylene, both in the chain (c-axis) direction. 

Caution must be exercised in accepting any, theoretical 
or experimental, value of the crystal modulus as being exact. 
The tb: "~ries suffer from simplifications made in order to 
perform any calculation at all, whereas the experimental 
work based on the use of X-ray-determined lattice strains 
presupp~., that lattice stresses are known - that is, a model 
of the structure has to be assumed. There is therefore a dan- 
ger of circular argument in using 'theoretical' moduli to com- 
pare with predictions from a model. 

It is clear then, as Frank 8 pointed out, that polyethylene 
could be as stiff as steel if the chains were fully extended, 
and during recent years several methods have been employed 
to try to achieve this condition. Drawing a fibre under 
simple tension has been the oldest of these methods, being 
employed in the textile industry. Although draw ratios of 
up to 30 have been achieved in the past in the laboratory 
(Illers 9, and Meinel and Peterlinl°), under conditions which 
now suggest high modulus may also have been attained, it is 
the recent work of Capaccio and Ward 11 and their collabora- 
tors which has drawn attention to the commercial practica- 
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Figure I Tensile modulus of high density polyethylene fibres as a 
function of post-neck draw ratio 

bility of achieving high draw ratios of up to 30, in such a 
way as to obtain high modulus. 

It has been known for many years that the attainment of 
high modulus is not solely a question of achieving a high de- 
gree of orientation of polymer chains as determined by X-ray 
diffraction or other means. Even with very high chain orien- 
tation a high modulus need not be achieved since the chains 
may be folded and the oriented crystals separated by a low 
modulus region (of folds). The fibre structure could then be 
represented by a series model of alternating crystal and amor 
phous regions. Models for the structure of drawn polymers 
have therefore achieved prominence in recent years (see, for 
example, McCullough et el. n). Up to the mid 1960s the 
model assumed for a semicrystaUized polymer was one in 
which the material was supposed to be made of two com- 
ponents, a crystalline and an 'amorphous' phase and the me- 
chanical coupling of these was either simple series, simple 
parallel or a combination of both. The growth of work on 
composite materials such as fibre- and particle-reinforced 
resins, glasses and metals has, however, led to the study of 
much more realistic models and to an understanding of their 
elastic, viscoelastic and, to some extent, plastic behaviour. 

One of the simpler of these models is presented here to 
explain the qualitative and, to an important extent, quanti- 
tire aspects of high draw ratio polyethylene and polypropy- 
lene fibres. This model is intended to form the basis of a 
general theory for the drawing of semicrystalline polymers. 

It assumes that the crystalline fibres, referred to above, 
formed after deformation of the spherulitic structure, are 
of length to diameter (aspect) ratio, between ~2 and ~12, 
depending on draw ratio and are embedded in a matrix of 
less perfect crystallinity in the manner of an oriented short 
fibre composite. Since the detailed account of the model is 

available in a previous publication la we shall here summarize 
the theory and outline (a) the explanation it gives of observed 
facts in polyethylene and polypropylene (b) implications of 
the theory for non-linear viscoelasticity and creep. 

EXPERIMENTAL 

Polyethylene 
Rigidex 50, moulded at 160°C, cooled at 1.5°C/min to 

110°C and then quenched in water was drawn at 75 ° -+ l°C 
to draw ratios up to 30 n,14. The modulus obtained, 
measured in the fibre direction appears to be a unique func- 
tion of draw ratio (Figure 1). 

Polypropylene 
The material used was high purity homopolymer supplied 

by ICI Ltd with a melt flow index (at 230°C under 2.16 kg) 
of 4.5. This was melted under pressure at 250°C and allowed 
to cool slowly (~3 h) to room temperature. Dumb-beU 
specimens with a gauge length of 10 mm, width 2.48 mm and 
thickness 0.86 mm were then cut from the sheet and drawn 
at 50 mm/min. Similar experiments have been reported by 
Cansfield et aL is. There appeared to be three regions of 
drawing behaviour with polypropylene. 

(a) Below 50°C the material failed in a brittle manner 
with neck formation. 

(b) Between 50°-100°C a stable neck formed running 
through the specimen and producing a white fibrous material. 

(c) Above 110°C a stable neck was formed and the drawn 
material remained transparent. Whitening again occurred 
however at high deformation. However, if material partly 
drawn at 1 IO°C, remaining transparent, was then heated to 
higher temperatures it was found possible to draw it further 
without whitening. 

Figure 2 summarizes the types of deformation found pos- 
sible, with their temperature ranges. It is seen that the modu- 
lus attainable with polypropylene is much lower than with 
polyethylene, for a given draw ratio. The reason for this is as 
follows. The crystal lattice in polyethylene is orthorhombic 
with the c-axis containing the polymer chains. Under c-axis 
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extension the polymer chains are directly extended and the 
modulus is consequently a function of bond bending and 
stretching, as was first shown by Treloar 16. The theoretical 
modulus along the chain axis for polyethylene probably lies 
between 250 and 350 GN/m 2 and is the highest attainable 
for a polymer since the cross-section of any other polymer 
is larger, because of side groups 17. In polypropylene the 
molecule adopts a helical configuration in the crystal unit 
cell, so that a stretch along the chain leads to some untwist- 
ing of the helix as well as to bond rotation, bending and 
stretching. 

Thermal behaviour o f  drawn fibres 

The 'elastic' moduli of drawn polymers are highly tem- 
perature dependent. The viscoelastic properties of highly 
drawn polyethylene have been investigated by Smith et al. ts 
and by ourselves 19. 

At high temperatures, irreversible changes occur and the 
fibre contracts unless it is held under constraint. If high- 
drawn polyethylene is held at constant strain at temperatures 
between 129 ° and 132°C the contractile forces are relaxed 
and the fibre when cooled under constraint to room tempe- 
rature is found to have lost its high modulus. After a period 
of some hours at room temperature, however, the high mo- 
dulus is partly (up to 75%) regained. We have termed this 
'self-hardening' in a previous publication 2°, (more properly 
'self-stiffening'). The higher the temperature of annealing 
under constraint, the more complete is the regaining of high 
modulus. The self-stiffened material does not contract on re- 
heating. A similar effect can be seen in polypropylene al- 
though the magnitudes of the changes are much smaller than 
those in polyethylene. 

The fact that polyethylene does not melt completely at 
129 ° -  132 ° C, while some component of it clearly is melting 
(or relaxing) suggests strongly that a component exists that 
is not melted out and that this must be an extended chain or 
fibril. Since there cannot be complete connectivity through- 
out the fibre (for practical molecular weights) something 
akin to a fibre composite seems an obvious texture to postu- 
late for drawn polyethylene. Here the fibrils making up the 
composite could be thought of as small crystals of near per- 
fect structure and orientation, embedded in a less perfect 
matrix. On cooling to room temperature recrystallization 
could occur with these fibrils acting as nuclei. In order to 
avoid a multiplicity of assumptions we choose to take the 
following. 

(1) The fibrils are formed on drawing and remain un- 
changed with temperature up to their melting point. 

(2) The matrix material in which they are embedded and 
which connects them is partly crystalline, probably with 
highly oriented amorphous material present which relaxes 
on annealing. 

(3) The self-stiffening effect is due to the oriented recrys- 
tallization (of. row nucleation) of the matrix material on the 
fibrils as nuclei thereby increasing the shear modulus of the 
matrix. 

(4) The simple shear lag theory of fibre composites may 
be applied for calculation of elastic moduli and yield 
behaviour. 

THEORY 

The model we are applying is the well-known shear lag 
theory of fibre composites in which the fibres carry tensile 

stresses only and the matrix in which they are embedded 
carries no tensile stress but transfers load from fibre to fibre 
by shear. It was used by Cox 21 to explain the properties of 
paper and together with more recent modifications is detailed 
in several textbooks e.g. Kelly 22. The principal results are as 
follows a3. The fibre Young's modulusE/is given by: 

E [  = CEc(1 - t a n h x / x )  + (1 - c )E  m (1) 

where E c, E m are the fibril and matrix Young's moduli, res- 
pectively and c is the volume concentration of fibrils. 

For hexagonally packed fibrils: 

Lc{ am }~/2 
r c E c In [21r/(31/2c)] 

(2) 

where G m is the shear modulus of the matrix, L c the fibril 
length and r c its radius. In shear lag theory the tensile stress, 
o, in the fibril depends upon the distance from the end, z, by 
the relation: 

cosh (z=,.J2)] 
o = e f c E  c 1 - cosh~Lc /2  J 

where e[ is the overall strain in the fibre. It is therefore pos- 
sible, using shear lag theory, to make estimates of the distri- 
bution of stress within a semicrystalline polymer when it is 
highly drawn. Such estimates have a bearing on the deter- 
mination of crystal strain by X-ray methods 7 and on the 
nature of such deformation processes as non-linear visco- 
elasticity and creep. 

Predictions should not however, be taken too far. Shear 
lag theory is an approximation only since it neglects factors 
such as normal stresses and the distribution of stress within a 
fibril which may not be uniform when such high anisotropy 
is present 23. It has however been found to be reasonably cor- 
rect except near fibre ends and the z-dependence of o is of 
the correct form ~. Short fibre composite theory also allows 
us to make a further prediction which is supported by experi- 
ment, namely of the way in which a composite will deform 
plastically. A detailed account of this is contained in 
another publication 25 but the essentials are as follows. 

Consider a fibril embedded in a matrix of lower elastic 
modulus and let the system be strained in the fibre direction. 
Three events may occur. 

(I) The matrix may extend elastically while constraining 
the fibril to deform with it until plastic deformation occurs. 
On removal of the stress the matrix will return to its former 
dimensions and the fibril will deform with it at first elastically 
and then under plastic compression. The system is then a 
model for a viscoelastic composite in which the fibril under- 
goes a hysteresis loop of cyclic extension and contraction. 

(II) Matrix and fibril may deform elastically and yield 
simultaneously. This deformation will be permanent and, 
we suggest, is what occurs in drawing past the neck in highly 
drawn polyethylene and polypropylene. 

(III) The matrix may yield before the fibrils do in which 
case drawing will occur but the fibrils will not extend per- 
manently. In ref 25 we refer to these three events as 
Regions I, II and III and suggest that a polymer may deform 
in one or other of these regions depending upon the tem- 
perature and rate of drawing. 

For a full understanding of the deformation modes it is 
necessary to assume that a distribution of fibril aspect 
(length/diameter) ratios exists. Whether or not a fibril will 
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Figure 3 Tensile modulus of polypropylene fibres (Odrawn at 
115°C; El, redrawn at higher temperatures) as a function of post-neck 
draw ratio. - - ,  derived from equation (1) using x = 1.1, c = 0.58 
and Ern = 1.41 GN/m 2 

yield is then dependent upon the relation between the fibril 
aspect ratio A and the yield ratio: 

Yield stress of fibril 

Yield stress of matrix 

IfAo ~> YR the fibrils will yield whereag ifA 0 < YR they 
will not. (This follows from the simple equating of the 
tensile force gradient in the fibril to the mean shear traction 
at yield on its surface.) 

APPLICATION OF THE MODEL 

Modulus-draw ratio relation 

Since our concern is with already-oriented material, that 
is material in which fibrils have formed, for example by the 
means described by Peterlin, the fibre composite model must 
explain the increase in modulus after necking. This cannot 
be by further orientation since it is well known that orienta- 
tion is virtually complete after the neck in drawn crystalline 
polymers. The basis of the theory propounded in refs 13 
and 20 is that the needle-like fibrils deform homogeneously 
with the fibre, increasing their length by the post-neck draw 
ratio t and becoming thinner by (approximately) (t) 1/2. [If 
the fibrils were incompressible the thinning would be exactly 
(t) 1/2] The aspect ratio at draw ratio t, A t is given by: 

A t =Ao t3/2 

Now equation (2) may be written: 

x = 2AoK 

where K depends upon G m, E c and c. We assume K to be 
constant during drawing. Hence, at draw ratio t: 

x t = 2 A t K  = 2Aot3/2K = xot3/2  

and equation (1) becomes: 

( 1  - tanhxo t3/2) 
E/t  = cE c + (1 - c )E m 

x 0 t 3/2 

That is, the increase in modulus on drawing past the neck is 
due to the increase in aspect ratio of the fibrils. This relation 
has been tested experimentally for polyethylene la and poly- 
propylene 2°. A very good fit of experimental data to theory 
is found in each case, this is illustrated in Figure 3 where the 
fit for polypropylene is shown. A more exact treatment, 
taking fibril length variability into account has been per- 
formed for polypropylene and also gives a very good fit (see 
ref 25). 

Temperature dependence o f  drawing behaviour 

On the fibre composite model this arises from the assumed 
difference in the temperature dependence of yield in fibrils 
and matrix, respectively. It is a plausible assumption that 
the fibril yield stress changes with temperature more slowly 
than the matrix yield stress. If their ratio YR is low and less 
than the fibril aspect ratio then fibril yield cannot occur and 
the fibre composite will deform viscoelastically until matrix 
failure occurs, if it does not yield. This behaviour is common 
to any fibre composite system and may be demonstrated, for 
example, in epoxy resin containing short copper wires. 
Again, the fibrils may break before yielding. This type of 
behaviour occurs in brittle fibre reinforced materials such 
as glass-reinforced aluminium and tungsten reinforced cop- 
per. It is probable that fibril breakage, or matrix brittle frac- 
ture is responsible for the failure to draw polypropylene 
below 50°C and for the fact that polyethylene requires a 
temperature of ~75°C before ultra-high drawing can be done. 

If the temperature is too high so that the yield ratio is 
greater than the aspect ratio of the longest fibrils then those 
fibrils cannot be plastically deformed, although the matrix 
may extend plastically, flowing over the strained but unyiel- 
ded fibrils. This is a possible explanation for the lower 
modulus obtained, even at high draw ratios, in polypropy- 
lene drawn at temperatures of 143°C, as shown in ref 25. 
Since the variables in the fibre composite theory of oriented 
polymers are many it is possible that some polymers may 
never be capable of achieving high modulus by drawing 
(though possibly by other means) while in other cases the 
temperature and speed ranges for successful drawing remain 
undetermined. 

Non-linear viscoelasticity and creep 

Although it is too early to make valid predictions of these 
properties it is worth pointing out that the inhomogeneity 
of the stress distribution in fibrils and matrix must lead ine- 
vitably to a non-linear viscoelastic behaviour since the posi- 
tion within the fibril at which yield will occur will depend 
upon the overall strain in a non-linear fashion. Similarly for 
matrix yield. Preliminary calculations of the expected be- 
haviour during cyclic strain in Region I indicate that this is 
the case. Assumption of a fibre composite model for the 
structure of a crystalline polymer will also allow calculation 
of creep behaviour for comparison with experiment. 

Self-stiffening 

The application of the model to this effect in qualitative 
terms is quite simple: we assume that at the high temperature 
there is some melting or relaxation process in the matrix 
which causes a severe drop in shear modulus. This reduced 
shear modulus is retained even at room temperature when the 
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specimen is cooled. Then the relaxed material in the matrix 
is assumed to recrystallize slowly in a lameUar form, this is 
manifested by an increasing density and by changes in the 
Raman spectrum and low-angle X-ray diffraction. We are able 
to make some quantitative predictions from the model about 
such a system. We can measure both the increase in density 
and the increase in tensile modulus as functions of  time after 
the annealing process (see ref 20, Figures 4 and 7). Fibre 
composite theory connects these two sets of  measurements 
if it is assumed that the fibril concentration, c, and aspect 
ratio L/r,  remain unchanged. Then the increase in density 
implies a change in matrix crystallinity, which can be calcu- 
lated from these measurements. The changes in tensile 
modulus are then associated with changes in matrix shear 
modulus which can also be associated with the matrix crys- 
tallinity as described in ref 10. If  we use the data obtained 
a long time after hardening to determine the fibril aspect 
ratio then we may plot the matrix crystallinity as a function 
of  time calculated from these two separate experiments; 
such a plot is shown in Figure 4. It can be seen that there is 

very good agreement between the two sets of  data, which 
gives us some confidence in this approach to the problem. 
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